Deep Learning Mit Python Und Keras

Deep Learning mit Python und Keras PDF
Author: Chollet, François
Publisher: MITP-Verlags GmbH & Co. KG
Size: 31.88 MB
Category : Computers
Languages : de
Pages : 447
View: 5672

Get Book

Deep Learning Mit Python Und Keras

Introduction To Deep Learning And Neural Networks With Pythont by Chollet, François, Deep Learning Mit Python Und Keras Books available in PDF, EPUB, Mobi Format. Download Deep Learning Mit Python Und Keras books,

Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch

Python Deep Learning  Develop Your First Neural Network in Python Using Tensorflow  Keras  and Pytorch PDF
Author: Samuel Burns
Publisher: Step-By-Step Tutorial for Begi
Size: 18.91 MB
Category : Computers
Languages : en
Pages : 172
View: 5350

Get Book

Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch

Introduction To Deep Learning And Neural Networks With Pythont by Samuel Burns, Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch Books available in PDF, EPUB, Mobi Format. Download Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch books, Build your Own Neural Network today. Through easy-to-follow instruction and examples, you'll learn the fundamentals of Deep learning and build your very own Neural Network in Python using TensorFlow, Keras, PyTorch, and Theano. While you have the option of spending thousands of dollars on big and boring textbooks, we recommend getting the same pieces of information for a fraction of the cost. So Get Your Copy Now!! Why this book? Book ObjectivesThe following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. Who this Book is for? The author targets the following groups of people: Anybody who is a complete beginner to deep learning with Python. Anybody in need of advancing their Python for deep learning skills. Professors, lecturers or tutors who are looking to find better ways to explain Deep Learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X. TensorFlow . Keras . PyTorch The Author guides you on how to install the rest of the Python libraries that are required for deep learning.The author will guide you on how to install and configure the rest. What is inside the book? What is Deep Learning? An Overview of Artificial Neural Networks. Exploring the Libraries. Installation and Setup. TensorFlow Basics. Deep Learning with TensorFlow. Keras Basics. PyTorch Basics. Creating Convolutional Neural Networks with PyTorch. Creating Recurrent Neural Networks with PyTorch. From the back cover. Deep learning is part of machine learning methods based on learning data representations. This book written by Samuel Burns provides an excellent introduction to deep learning methods for computer vision applications. The author does not focus on too much math since this guide is designed for developers who are beginners in the field of deep learning. The book has been grouped into chapters, with each chapter exploring a different feature of the deep learning libraries that can be used in Python programming language. Each chapter features a unique Neural Network architecture including Convolutional Neural Networks. After reading this book, you will be able to build your own Neural Networks using Tenserflow, Keras, and PyTorch. Moreover, the author has provided Python codes, each code performing a different task. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand.

Deep Learning From Scratch

Deep Learning from Scratch PDF
Author: Artem Kovera
Publisher: Independently Published
Size: 11.35 MB
Category :
Languages : en
Pages : 209
View: 6681

Get Book

Deep Learning From Scratch

Introduction To Deep Learning And Neural Networks With Pythont by Artem Kovera, Deep Learning From Scratch Books available in PDF, EPUB, Mobi Format. Download Deep Learning From Scratch books, This book will help you develop a step-by-step understanding of deep learning completely from scratch!! This book covers: Introduction to machine learning and deep learning Math for deep learning explained to the layman How neural networks work: a general overview Activation functions in deep networks Loss functions Weight initialization and batch normalization Overfitting and underfitting and methods to overcome them in deep neural networks How to evaluate deep learning models Introduction to transfer learning with deep neural networks How to set up optimal hyper-parameters for deep models Convolutional neural networks Recurrent Neural Networks Adversarial neural networks Deep reinforcement learning Introduction to the Keras API for Deep Learning Introduction to Keras Callbacks How to build a simple deep neural network for image classification with Keras How to build a neural network for regression with Keras How to build a convolutional network for image classification with Keras

Introduction To Deep Learning

Introduction to Deep Learning PDF
Author: Sandro Skansi
Publisher: Springer
Size: 60.81 MB
Category : Computers
Languages : en
Pages : 191
View: 5175

Get Book

Introduction To Deep Learning

Introduction To Deep Learning And Neural Networks With Pythont by Sandro Skansi, Introduction To Deep Learning Books available in PDF, EPUB, Mobi Format. Download Introduction To Deep Learning books, This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Neuronale Netze Selbst Programmieren

Neuronale Netze selbst programmieren PDF
Author: Tariq Rashid
Publisher: O'Reilly
Size: 71.71 MB
Category : Computers
Languages : de
Pages : 232
View: 737

Get Book

Neuronale Netze Selbst Programmieren

Introduction To Deep Learning And Neural Networks With Pythont by Tariq Rashid, Neuronale Netze Selbst Programmieren Books available in PDF, EPUB, Mobi Format. Download Neuronale Netze Selbst Programmieren books, Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Introduction To Deep Learning And Neural Networks With Pythontm

Introduction to Deep Learning and Neural Networks with PythonTM PDF
Author: Ahmed Fawzy Gad
Publisher: Academic Press
Size: 73.65 MB
Category : Medical
Languages : en
Pages : 300
View: 7334

Get Book

Introduction To Deep Learning And Neural Networks With Pythontm

Introduction To Deep Learning And Neural Networks With Pythont by Ahmed Fawzy Gad, Introduction To Deep Learning And Neural Networks With Pythontm Books available in PDF, EPUB, Mobi Format. Download Introduction To Deep Learning And Neural Networks With Pythontm books, Introduction to Deep Learning and Neural Networks with PythonTM: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonTM code examples to clarify neural network calculations, by book’s end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonTM examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network. Examines the practical side of deep learning and neural networks Provides a problem-based approach to building artificial neural networks using real data Describes PythonTM functions and features for neuroscientists Uses a careful tutorial approach to describe implementation of neural networks in PythonTM Features math and code examples (via companion website) with helpful instructions for easy implementation

Introduction To Deep Learning Using Pytorch

Introduction to Deep Learning Using PyTorch PDF
Author: Goku Mohandas
Publisher:
Size: 52.21 MB
Category :
Languages : en
Pages :
View: 7748

Get Book

Introduction To Deep Learning Using Pytorch

Introduction To Deep Learning And Neural Networks With Pythont by Goku Mohandas, Introduction To Deep Learning Using Pytorch Books available in PDF, EPUB, Mobi Format. Download Introduction To Deep Learning Using Pytorch books, "This video will serve as an introduction to PyTorch, a dynamic, deep learning framework in Python. In this video, you will learn to create simple neural networks, which are the backbone of artificial intelligence. We will start with fundamental concepts of deep learning (including feed forward networks, back-propagation, loss functions, etc.) and then dive into using PyTorch tensors to easily create our networks. Finally, we will CUDA render our code in order to be GPU-compatible for even faster model training."--Resource description page.

Introduction To Deep Learning

Introduction to Deep Learning PDF
Author: Juergen Brauer
Publisher: Createspace Independent Publishing Platform
Size: 18.33 MB
Category :
Languages : en
Pages : 246
View: 1849

Get Book

Introduction To Deep Learning

Introduction To Deep Learning And Neural Networks With Pythont by Juergen Brauer, Introduction To Deep Learning Books available in PDF, EPUB, Mobi Format. Download Introduction To Deep Learning books, About the book: In Computer Sciences there is currently a gold rush mood due to a new field called "Deep Learning".But what is Deep Learning? This book is an introduction to Neural Networks and the most important Deep Learning model - the Convolutional Neural Network model including a description of tricks that can be used to train such models more quickly.We start with the biological role model: the Neuron. About 86.000.000.000 of these simple processing elements are in your brain! And they all work in parallel! We discuss how to model the operation of a biological neuron with technical neuron models and then consider the first simple single-layer network of technical neurons. We then introduce the Multi-Layer Perceptron (MLP) and the Convolutional Neural Network (CNN) model which uses the MLP at its end. At the end of the book we discuss promising new directions for the field of Deep Learning.A famous physicist once said: "What I cannot create, I do not understand". For this, the book is full of examples of how to program all models discussed in Python and TensorFlow - Today, the most important Deep Learning library.About the author: Prof. Dr.-Ing. Juergen Brauer is a professor for Sensor Data Processing and Programming at the University of Applied Sciences Kempten in Germany where he holds a "Deep Learning" and other machine learning related lectures for Computer Science and Advanced Driver Assistance Systems students.His personal experience tells him: "What I cannot program, I do not understand".

Deep Learning With Python

Deep Learning with Python PDF
Author: Chao Pan
Publisher: Createspace Independent Publishing Platform
Size: 28.31 MB
Category :
Languages : en
Pages : 124
View: 1202

Get Book

Deep Learning With Python

Introduction To Deep Learning And Neural Networks With Pythont by Chao Pan, Deep Learning With Python Books available in PDF, EPUB, Mobi Format. Download Deep Learning With Python books, ***** BUY NOW (will soon return to 24.77 $) *****Are you thinking of learning deep Learning using Python? (For Beginners Only) If you are looking for a beginners guide to learn deep learning, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach, which would lead to better mental representations.Step-by-Step Guide and Visual Illustrations and ExamplesThis book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Book Objectives This book will help you: Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks using Python. Target UsersThe book designed for a variety of target audiences. Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and deep learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Understanding Machine Learning Models Evaluation of Machine Learning Models: Overfitting, Underfitting, Bias Variance Tradeoff Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras A First Look at Neural Networks in Keras Introduction to Pytorch The Pytorch Deep Learning Framework Your First Neural Network in Pytorch Deep Learning for Computer Vision Build a Convolutional Neural Network Deep Learning for Natural Language Processing Working with Sequential Data Build a Recurrent Neural Network Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash Deep Learning from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email.***** MONEY BACK GUARANTEE BY AMAZON ***** Editorial Reviews"This is an excellent book, it is a very good introduction to deep learning and neural networks. The concepts and terminology are clearly explained. The book also points out several good locations on the internet where users can obtain more information. I was extremely happy with this book and I recommend it for all beginners" - Prof. Alain Simon, EDHEC Business School. Statistician and DataScientist.

Mastering Deep Learning Fundamentals

Mastering Deep Learning Fundamentals PDF
Author: Ai Publishing
Publisher: AI Publishing
Size: 37.85 MB
Category :
Languages : en
Pages : 162
View: 2514

Get Book

Mastering Deep Learning Fundamentals

Introduction To Deep Learning And Neural Networks With Pythont by Ai Publishing, Mastering Deep Learning Fundamentals Books available in PDF, EPUB, Mobi Format. Download Mastering Deep Learning Fundamentals books, ** ONE HOUR FREE VIDEO COURSE IN DEEP LEARNING INCLUDED** **Get your copy now, the price will change soon**You are interested in deep learning, but don't know how to get startedLet us help youWho are the book for? Are a college student and want more than your university course offers Are you a student interested in a career in Data science? Are you a programmer who wants to make a career switch into data science and AI? Are you an engineer who wants to use new data science techniques at your current job? Are you an entrepreneur who dreams of a data science but do not yet know the basics? Are you a hobbyist who wants to build cool data science projects? Are you a data scientist practitioner and want to broaden your area of expertise? If the answer to any of the above questions is a YES, this book is for you.We have designed this book for beginners in mind and our goal is to prepare students with practical skills to solve real-world problems and to stand out in the job market.This book are not for shallow learners who simply want to copy-paste code. This book will require your time and commitment.Our book is different from other books?If you are searching for a step by step guide to learn deep learning and AI from scratch or are interested in the current updates of the AI world, our book is just the right one for you. This book paves beginners' road towards the path of deep learning concepts and algorithms without any traditional complexity of mathematical formulas.With the help of graphs and images, this books is the easiest to comprehend even by those who have no previous technological knowledge of machine learning. Moreover, our book, with its comprehensive content, prepares the readers for higher advanced courses.We strive to provide world-class data science and AI education at reasonable prices. To achieve that, we have put in a lot of planning and efforts to provide a rich learning experience for the students.What's Inside This Book? Part I: Fundamentals of Deep learning Fundamentals of Probability Fundamentals of Statistics Fundamentals of Linear Algebra Introduction to Machine Learning and Deep Learning Fundamentals of Machine Learning Fundamentals of Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Deep Learning Loss Functions Deep Learning Optimization Algorithms Convolutional Neural Network Recurrent Neural Networks LSTM Recursive Neural Networks Bonus Course Conclusion Part II: Deep Learning in Practice (In Jupyter notebooks) Python for Beginners Python Data Structures Python Function Object Oriented Programming in Python Best practices in Python and Zen of Python Installing Python Numpy, Pandas, Matplotlib and Scikit-learn Evaluating a model's performance Keras and Tensorflow Deep learning workstation: Jupyter Notebooks and Getting Binary Classification Building Deep Learning Model Convolutional Neural Networks in Keras Data Preparation Model Building Training and Testing Deep learning for text and sequences Brief introduction to Google Colab Data Preparation Data Wrangling and Analysis Recurrent Neural Network (RNN) ** MONEY BACK GUARANTEE BY AMAZON **If you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform or contact us (our email inside the book).

Mastering Deep Learning Fundamentals With Python

Mastering Deep Learning Fundamentals with Python PDF
Author: Richard Wilson
Publisher: Independently Published
Size: 64.24 MB
Category :
Languages : en
Pages : 220
View: 3907

Get Book

Mastering Deep Learning Fundamentals With Python

Introduction To Deep Learning And Neural Networks With Pythont by Richard Wilson, Mastering Deep Learning Fundamentals With Python Books available in PDF, EPUB, Mobi Format. Download Mastering Deep Learning Fundamentals With Python books, ★★Buy the Paperback Version of this Book and get the Kindle Book version for FREE ★★ Step into the fascinating world of data science.. You to participate in the revolution that brings artificial intelligence back to the heart of our society, thanks to data scientists. Data science consists in translating problems of any other nature into quantitative modeling problems, solved by processing algorithms. This book, designed for anyone wishing to learn Deep Learning. This book presents the main techniques: deep neural networks, able to model all kinds of data, convolution networks, able to classify images, segment them and discover the objects or people who are there, recurring networks, it contains sample code so that the reader can easily test and run the programs. On the program: Deep learning Neural Networks and Deep Learning Deep Learning Parameters and Hyper-parameters Deep Neural Networks Layers Deep Learning Activation Functions Convolutional Neural Network Python Data Structures Best practices in Python and Zen of Python Installing Python Python These are some of the topics covered in this book: fundamentals of deep learning fundamentals of probability fundamentals of statistics fundamentals of linear algebra introduction to machine learning and deep learning fundamentals of machine learning fundamentals of neural networks and deep learning deep learning parameters and hyper-parameters deep neural networks layers deep learning activation functions convolutional neural network Deep learning in practice (in jupyter notebooks) python data structures best practices in python and zen of python installing python The following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. And more Get this book now to learn more about -- Deep learning in Python by setting up the coding environment.!

Practical Deep Learning With Python

Practical Deep Learning with Python PDF
Author: Ron Kneusel
Publisher: No Starch Press
Size: 20.14 MB
Category : Computers
Languages : en
Pages : 464
View: 2583

Get Book

Practical Deep Learning With Python

Introduction To Deep Learning And Neural Networks With Pythont by Ron Kneusel, Practical Deep Learning With Python Books available in PDF, EPUB, Mobi Format. Download Practical Deep Learning With Python books, "An introduction to machine learning and deep learning for beginners. Covers fundamental concepts before presenting classic machine learning models, neural networks, and modern convolutional neural networks. Includes hands-on Python experiments for each model"--

Elements Of Deep Learning For Computer Vision

Elements of Deep Learning for Computer Vision PDF
Author: Bharat Sikka
Publisher: BPB Publications
Size: 72.60 MB
Category : Computers
Languages : en
Pages : 208
View: 7179

Get Book

Elements Of Deep Learning For Computer Vision

Introduction To Deep Learning And Neural Networks With Pythont by Bharat Sikka, Elements Of Deep Learning For Computer Vision Books available in PDF, EPUB, Mobi Format. Download Elements Of Deep Learning For Computer Vision books, Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World

Deep Learning Fundamentals

Deep Learning Fundamentals PDF
Author: Chao Pan
Publisher: Createspace Independent Publishing Platform
Size: 38.71 MB
Category :
Languages : en
Pages : 96
View: 7649

Get Book

Deep Learning Fundamentals

Introduction To Deep Learning And Neural Networks With Pythont by Chao Pan, Deep Learning Fundamentals Books available in PDF, EPUB, Mobi Format. Download Deep Learning Fundamentals books, This book is the first part of the book deep learning with Python write by the same author. If you already purchased deep learning with Python by Chao Pan no need for this book. Are you thinking of learning deep Learning fundamentals, concepts and algorithms? (For Beginners) If you are looking for a complete beginners guide to learn deep learning with examples, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Instead of tough math formulas, this book contains several graphs and images. Book Objectives Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks. Target Users The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction Teaching Approach What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Machine Learning Fundamentals Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash deep learning from scratch, this book is for you. No programming experience is required. The present only the fundamentals concepts and algorithms of deep learning. It ll be a good introduction for beginners.Q: Can I loan this book to friends?A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days.Q: Does this book include everything I need to become a Machine Learning expert?A: Unfortunately, no. This book is designed for readers taking their first steps in Deep Learning and further learning will be required beyond this book to master all aspects.Q: Can I have a refund if this book is not fitted for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected]

Introduction To Deep Learning And Neural Networks With Pythont

Introduction to Deep Learning and Neural Networks with PythonT PDF
Author: Ahmed Fawzy Gad
Publisher: Academic Press
Size: 68.62 MB
Category : Medical
Languages : en
Pages : 300
View: 1932

Get Book

Introduction To Deep Learning And Neural Networks With Pythont

Introduction To Deep Learning And Neural Networks With Pythont by Ahmed Fawzy Gad, Introduction To Deep Learning And Neural Networks With Pythont Books available in PDF, EPUB, Mobi Format. Download Introduction To Deep Learning And Neural Networks With Pythont books, Introduction to Deep Learning and Neural Networks with PythonT: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonT code examples to clarify neural network calculations, by book's end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonT examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network. Examines the practical side of deep learning and neural networks Provides a problem-based approach to building artificial neural networks using real data Describes PythonT functions and features for neuroscientists Uses a careful tutorial approach to describe implementation of neural networks in PythonT Features math and code examples (via companion website) with helpful instructions for easy implementation